

an	TIC		ONIC
- NP		$\Delta \square$	ONS.
01			

Catalog Number	C3047		
Cell Line Name	Human LAG3-CHO-K1 stable cell line		
Accession Number	NP_002277.4		
Host Cell	Adherent CHO-K1		
Quantity	Two vials of frozen cells $(1x10^6 \text{ per vial})$		
Culture Medium	DMEM with 10% FBS, 4µg/ml puromycin		
Freezing Medium	90% FBS and 10% DMSO		
Storage	Liquid nitrogen		

DATA

Detection of human LAG3 expression on human LAG3-CHO-K1 stable cells using a PE anti-human LAG3 antibody (BioLegend, Cat. #369305).

BACKGROUND

LAG-3 (Lymphocyte-activation gene 3) is a protein receptor in the immunoglobulin superfamily expressed on various immune cells. LAG-3 interacts with major histocompatibility complex class II (MHC-II) molecules on antigen-presenting cells (APCs) to regulate T cell activation and tolerance. By binding to MHC-II, LAG-3 can negatively regulate the activation and proliferation of T cells, promoting immune tolerance and preventing excessive immune responses. LAG-3 is involved in maintaining immune homeostasis and preventing autoimmunity. The expression of LAG-3 in cancer is often upregulated in tumor-infiltrating lymphocytes (TILs) and exhausted T cells within the tumor microenvironment leading to immune dysfunction and impaired antitumor immune responses. Tumor cells may exploit the LAG-3 pathway to evade immune surveillance and promote immune tolerance, thereby facilitating tumor growth and metastasis. The unique property of LAG-3 as an immune checkpoint molecule has led to its exploration as a potential therapeutic target in cancer immunotherapy.

References

Woo SR, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72:917-927.2012.

Maruhashi T, Sugiura D, Okazaki IM, et al. LAG-3 inhibits the activation of CD4+ T cells that recognize stable pMHCII through its conformation-dependent recognition of pMHCII. *Nat Immunol.*;19:1415-1426.2018.

Andrews LP, Cillo AR, Karapetyan L, Kirkwood JM, Workman CJ, Vignali DAA. Molecular Pathways and Mechanisms of LAG3 in Cancer Therapy. Clin Cancer Res. 28:5030-5039. 2022.

Disclaimer: For research use only. Not for use in humans.